VR Headset Leakage Measurement Sequence

VR Headset Leakage measurement screenshotVR headset leakage measurement is a useful parameter for VR headset characterization. While they are sometimes connected to headphones, most VR headsets also contain built-in speakers, often on the strap close to the ear. These small speakers often have considerable audio leakage due to their positioning on the band, where there is some transmission through air before reaching the ear. This is annoying to others in the room, so efforts are made to minimize this. 

For this measurement, the headset is positioned on a head and torso simulator mounted on a turntable, and a log sweep played from 20Hz-20kHz at user-defined level and distance. The sequence measures leakage and frequency response for one ear in 10° increments from 0 to 180°, and mirrors it to provide a complete 360° polar plot. The final display produces a polar plot for four frequencies, and all eighteen measurements are shown on a frequency response graph.

More

Bluetooth Headset Test Sequence

The purpose of this sequence is to test a Bluetooth headset using a mixture of analog and digital channels. First, a Multitone stimulus is created with SoundCheck, played back over the Bluetooth headset (at 8 kHz) and recorded by a head and torso simulator’s ear (at 44.1 kHz). Then the same Multitone stimulus is played back through the head and torso’s mouth simulator (at 44.1 kHz) and recorded via the Bluetooth headset (at 8 kHz).

Due to inaccuracies of clock frequency, the Bluetooth device playback sampling rate is often slightly different than it is specified. Therefore, in SoundCheck, the Recorded Time Waveforms are frequency shifted to correct for the inaccurate sampling rate. The exact device playback sampling rate is displayed.

More

Headphone Test Sequence

This headphone test sequence measures a stereo headphone. Both left and right earphones are measured simultaneously using a standard 1/12th Octave stepped-sine sweep from 20 Hz to 20 kHz.

The analysis is then performed using Listen’s HarmonicTrak™ algorithm that measures harmonic distortion and fundamental frequency response simultaneously. Then the diffuse-field and free-field corrected Fundamentals are calculated. The diffuse-field correction curve compensates for the overall frequency response from the diffuse-field (sound in every direction) to the eardrum and includes the effects of the head, torso, pinna, ear-canal and ear simulator. The free-field correction curve compensates for the overall frequency response from the free-field (sound at 0 degree incidence to the nose of the Head and Torso Simulator – HATS) to the eardrum.

Further post-processing of the signal compares left and right earphone responses to show the difference curve (magnitude and phase are available). The average sensitivity from 100 to 10 kHz for both left and right earphone is calculated and the total harmonic distortion displayed.

More

Measuring Hearing Protection Devices to ANSI S3.19-1974 Standard

This sequence is used to measure the NRR, or Noise Reduction Rating, of a hearing protection device to the ANSI S3.19-1974 standard. NRR is a numerical representation of the sound attenuation of a device. The sequence first measures the response spectrum of the unoccluded hearing protector test fixture, then makes a second measurement with the hearing protection DUT affixed. A signal generator virtual instrument generates the pink noise stimulus while an RTA virtual instrument simultaneously records the A and C weighted noise spectrums. The unoccluded and occluded measurements are analyzed with a series of post-processing steps according to the ANSI S3.19-1974 standard. The final display shows the NRR numerical value, RTA spectra of the left and right side of the unoccluded and occluded hearing test fixture, average attenuation level of the DUT, and the standard deviation of the DUT on the test fixture.

More

Prediction of Listener Preference of In-Ear Headphones (Harman Model)

This sequence, inspired by AES papers on statistical models to predict listener preference by Sean E. Olive, Todd Welti, and Omid Khonsaripour of Harman International, applies the Harman target curve for in-ear, on-ear and over-ear headphones to a measurement made in SoundCheck to yield the predicted user preference for the device under test. The measurements are made in SoundCheck and then saved to an Excel template which performs the necessary calculations to produce a Predicted Preference score using a scale of 0 to 100. The spreadsheet calculates an Error curve which is derived from subtracting the target curve from an average of the headphone left/right response. The standard deviation, slope and average of the Error curve are calculated and used to calculate the predicted preference score. The sequence also provides the option to recall data rather than making a measurement, which saves time for engineers who already have large quantities of saved data, and enables historical comparison with obsolete products.

More

Measuring Max SPL versus Frequency

This sequence measures the Max SPL of a transducer versus frequency that a device can play back with acceptable distortion. It is particularly valuable for designers using DSP algorithms to optimize the performance of their speakers.

It characterizes the Max SPL of a transducer by setting limits on specific metrics (THD, Rub & Buzz, Perceptual Rub & Buzz, Input Voltage and Compression) and then driving the transducer at a series of standard ISO frequencies, increasing the stimulus level until the one of the limits is surpassed. The sequence begins by measuring the frequency response and impedance of the DUT. The user is asked if they wish to use the -3dB from resonance frequency as the test Start Frequency or manually enter another value. The user is then prompted to enter a Stop Frequency, initial test level and limit values for the metrics of interest. The sequence then plays the stimulus Start Frequency in a loop, increasing the level +3dB with each loop iteration until one of the limits is exceeded.  The stimulus level is then adjusted -3dB and the sequence continues to a second loop which increases the stimulus level +0.5 dB with each loop iteration until the limit is exceeded. At this point, the limit results are saved to an Excel file, the stimulus frequency is incremented by a constant multiplication step and the process is repeated until the Stop Frequency is achieved. Every time the main loop is completed, the individual SPL and Stimulus Level x-y pairs are concatenated to master curves. At the end of the sequence, the Max SPL and Stimulus Level curves are autosaved in .dat format.

More

Bluetooth Headset Testing

Screenshot of final SoundCheck display of Bluetooth Headset Testing Sequence

Final display of Bluetooth Headset Testing Sequence

This Bluetooth Headset testing sequence for SoundCheck measures the send and receive performance of a stereo Bluetooth headset with a built-in microphone using a mixture of analog and digital channels. The left and right earphones are measured simultaneously with a stepped sweep from 20kHz to 20 Hz using two Bluetooth profiles: A2DP and HFP. The mic is measured with a stepped sweep from 8kHz to 100Hz using the HFP profile.

A short 1kHz tone is pre-pended to the test stimulus which serves as a reference tone for resampling and frequency shift operations. Post-processing resampling and frequency shift precisely synchronizes the stimulus and response waveforms prior to analysis. In this case, the HarmonicTrak algorithm is used for frequency and THD analysis. A2DP frequency response and THD curves are displayed on the first display, followed by A2DP & HFP curves superimposed on a subsequent display. Lastly, the Bluetooth headset’s microphone is tested with HFP and its frequency response is shown on the final display along with the previously collected data.

More

Lightning Headphone Test (Open Loop Headphone Test)

open_loop_headphone_screenshotThis sequence tests a stereo headphone connected to a portable audio device such as a mobile phone or MP3 player. This open loop headphone test is particularly useful for testing headphones with proprietary connectors such as the Lightning connector which otherwise can’t be tested in a conventional “closed loop” test configuration.

The test stimulus is created in SoundCheck, saved as a WAV file and loaded on to the portable device for playback. Both left and right earphones are measured simultaneously using a continuous log sweep from 20 Hz to 20 kHz. The sequence uses a short 1 kHz tone, pre-pended to the normal test stimulus to automatically trigger the test when playback of the test signal begins; it also serves as reference tone for any frequency shift calculations. Post-processing precisely synchronizes the stimulus and response waveforms, and then calculation of the measurement parameters proceeds as with any conventional headphone. In this case, analysis is performed using the Time Selective Response (TSR) algorithm which performs THD and fundamental frequency response analysis simultaneously in addition to producing an impulse response. The fundamentals are then post processed to derive the sensitivity of the left and right channels at 1 kHz.

More

Headphone Testing with SoundCheck ONE

This SoundCheck ONE template sequence contains all the essential steps for basic headphone measurements using SoundCheck ONE and AudioConnectTM. The sequence can be easily customized and saved for specific products by turning individual measurements on and off, and by adjusting settings within each sequence step such as stimulus range and level, tolerance limits, graphical displays, and data saving.
Please note that sequences in SoundCheck ONE cannot have steps added/removed or the layout modified – the full version of SoundCheck is required for this capability.

More

IEC-60268-7 Headphone Sequences

IEC-60268-7: Sound System Equipment – Part 7: Headphones and Earphones is an international standard intended to characterize the performance of headphones and earphones. The standard itself is a lengthy document, 9 Sections and 3 Annexes covering 46 printed pages. These SoundCheck sequences focus on the electro-acoustic tests which are detailed in Section 8 “Characteristics to be specified and their method of measurement”.

Five separate sequences are provided, each designed to measure specific characteristics. This approach provides the user with the flexibility to measure all or some of the characteristics of their headphone.

More