Triggered Record Using Chirp Trigger and WAV File (Version 17 and later)

This test sequence demonstrates SoundCheck’s Triggered Record – Chirp Trigger function for open loop testing of devices without analog inputs such as smart speakers, wearables, smart home devices, tablets and cellphones.  A stimulus WAV file is created in SoundCheck and transferred to the device under test, where it is played back and the response recorded in SoundCheck as if the stimulus were played directly from SoundCheck. The Acquisition step is triggered by the chirp in the stimulus file. Chirp triggers are more robust than level and frequency triggers which are susceptible to false triggering due to background noise.

More

Measuring Max SPL versus Frequency

This sequence characterizes the performance of transducers such as speakers, microspeakers and headphones by measuring how much voltage is required at each frequency to drive the transducer to specified limits of THD, Rub & Buzz, Perceptual Rub & Buzz or Compression. This is useful for detailed transducer analysis and determination of optimal power rating.

The user selects which metric is tested (one at a time is advised), the limit value and the stimulus start frequency. The sequence then uses an iterative looping process, initially with a +3dB step and then a +0.5dB step to precisely determine the value at which the limit is exceeded. This is repeated across the frequency range to generate curves of voltage and SPL vs frequency at the specified limit.

More

Triggered Record Using WAV File (Version 16.1 and later)

This sequence allows you to test devices without an analog input such as smart speakers, tablets, cellphones and MP3 players using SoundCheck’s frequency-based trigger functionality. This method offers improved accuracy over previous level-based triggering, especially in noisy environments. A stimulus WAV file is created in SoundCheck, and copied to the device under test, where it is played and the response recorded in SoundCheck as if the stimulus were played directly from SoundCheck. The stimulus WAV file to be used on the device under test (DUT) may be customized in the stimulus step.

Note that this sequence uses the level-based trigger available in SoundCheck 16.1 and later. If you are using version 16.0 or earlier, please see the level-based trigger sequence.

More

 

Smart Speaker – Embedded Microphone Test Sequence

smart_speaker_final_display_micThis sequence demonstrates a method by which SoundCheck can measure the performance of a microphone embedded in a so-called “smart speaker”. This example assumes that the DUT is an Amazon Echo but it can be adapted for use with virtually any other type of smart speaker by substituting the Echo’s voice activation phrase WAV file (“Alexa”) with one specific to the desired make and model.

The sequence begins by playing a voice activation phrase out of a source speaker, prompting the DUT to record both the voice command and the ensuing stepped sine sweep stimulus. A message step then prompts the operator to retrieve this recording from the DUT’s cloud storage system. This is accomplished by playing back the recording from the cloud and capturing it with a Triggered Record step in the SoundCheck test sequence.  The Recorded Time Waveform is then windowed (to remove the voice command) and frequency shifted prior to analysis and the result (Frequency Response) is shown on the final display step.

More

Smart Speaker – Embedded Loudspeaker Test Sequence

smart_speaker_final_displayThis sequence demonstrates a method by which SoundCheck can measure the performance of a loudspeaker embedded in a so-called “smart speaker”. This example assumes that the DUT is an Amazon Echo but it can be adapted for use with virtually any other type of smart speaker by substituting the Echo’s voice activation phrase audio file (“Alexa, play Test Signal One”) with one specific to the desired make and model.

The sequence begins by playing the voice activation phrase out of a source speaker, prompting the DUT to playback the mp3 stimulus file from the cloud, followed by a pause step to account for any activation latency. Following the pause, a triggered record step is used to capture the playback from the DUT. The Recorded Time Waveform is then frequency shifted prior to analysis and the results (Frequency Response, THD and Perceptual Rub & Buzz) are shown on the final display step.

We recommend reading our AES paper on this subject prior to continuing as it contains additional details on the test methods devised for this sequence.

More

Comparison of Wired and Wireless (Bluetooth) Speaker Response

bluetooth_speaker_responseThis test sequence performs frequency response and distortion measurements of a Bluetooth speaker using both a wireless Bluetooth and wired stimuli, and compares the results. This sequence is configured for use with a Portland Tool & Die BTC-4148 or BQC-4148 Bluetooth interface.

Initially, the sequence prompts the operator to turn on the Bluetooth device under test and set it to pairing mode. BTC message steps will connect the Bluetooth device (operator selects the device from a list of detected Bluetooth devices) and connects Bluetooth audio. A 1 kHz test tone is transmitted, and if detected, the test sequence proceeds. A stepped sine sweep from 20 kHz to 100 Hz is played wirelessly to the Bluetooth speaker and measured via a calibrated reference mic.

Two post-processing steps convert the sampling rate and alignment of the response, then an analysis step calculates the frequency response and THD. The Bluetooth is disconnected, and the Bluetooth frequency response and THD curves are displayed on graphs. The operator is then prompted to connect the wired analog input into the Bluetooth speaker, and the same measurements are performed using the analog connection. Analog frequency response and THD curves are temporarily displayed on graphs, followed by graphs containing both Bluetooth and analog curves for comparison.

More

Triggered Record Using WAV File (Version 16.0 and earlier)

triggered_record_screenshotThis sequence allows you to test devices without an analog input such as tablets, cellphones and MP3 players. A stimulus WAV file is created in SoundCheck, and copied to the device under test, where it is played and the response recorded in SoundCheck as if the stimulus were played directly from SoundCheck. The stimulus WAV file to be used on the device under test (DUT) may be customized in the stimulus step.

Note that this sequence uses the level-based trigger available in SoundCheck 16.0 and earlier. If you are using version 16.1 or later, please see the frequency-trigger based sequence which takes advantage of new functionality to offer more robust triggering.

More

Thiele-Small Parameters

Loudspeaker system performance can be quantitatively related to a set of electro-mechanical parameters. These parameters are known in the industry as Thiele-Small parameters. They were first introduced by A.N.Thiele and Richard H.Small in a series of famous articles published in the 1971-72 Journal of AES (Audio Engineering Society).  Over the years these parameters have become standards in the industry, and are used by loudspeaker designers worldwide. This package contains SoundCheck sequences for measuring measuring Thiele-Small Parameters by Added Mass, Known Volume, Known Driver Mass methods.

More

Impedance Measurement – Dual Channel Method Using Math Post-Processing

Impedance_measurement_math_postprocessing_outputThis sequence demonstrates an alternative to the traditional SoundCheck single channel impedance measurement method. A stepped sine sweep from 20 Hz to 20 kHz is played through the speaker while the signal across the loudspeaker terminals is recorded by Direct In 1 and the signal across the sense resistor (impedance box) is recorded by Direct In 2. A heterodyne analysis step is then applied to calculate the fundamental response from both inputs and a math post-processing step divides Fundamental A (speaker terminal voltage) by Fundamental B (voltage across sense resistor). A post-processing step corrects for the value of the reference resistor before displaying the final impedance curve. The curve is then post-processed to calculate resonance frequency, maximum impedance and Q of the resonance peak.  A set of arbitrary limits steps are also provided to generate pass/fail results.

More

Perceptual Rub & Buzz

Perceptual Rub & Buzz ScreenshotThis sequence uses the CLEAR algorithm for perceptual Rub & Buzz measurement to detect AUDIBLE Rub & Buzz. It uses a simplified auditory perceptual model to measure the loudness of Rub & Buzz distor­tion in phons rather than the more traditional dB SPL and % distortion units. These better identify whether distortion due to manufacturing defects can be heard by the listener than conventional measurements. In addition to a result which corresponds more accurately to the human ear, this new test method also offers two significant advantages for use on the production line. It is less sensitive to transient background noises than traditional methods, therefore is reliable in noisy environments, and it is much simpler to set limits than when us­ing conventional distortion measurements. The sequence includes saved data that can be loaded from disk, so even if you don’t have a speaker handy you can still listen to the wav. file and see how SoundCheck displays the data.

More