Bluetooth Headphone Test

bluetooth headset test resultThis sequence tests the send and receive performance of a stereo Bluetooth headset with a built-in microphone using a mixture of analog and digital channels. The left and right earphones are measured simultaneously with a stepped sweep from 20 kHz to 20 Hz using two Bluetooth profiles: A2DP and HFP. The mic is measured with a stepped sweep from 8 kHz to 100 Hz using the HFP profile.

A short 1 kHz tone is pre-pended to the test stimulus which serves as reference tone for resampling and frequency shift operations. Post-processing resampling and frequency shift precisely synchronizes the stimulus and response waveforms prior to analysis. In this case, the HarmonicTrak algorithm is used for frequency response and THD analysis. A2DP frequency response and THD curves are displayed on the first display, followed by A2DP & HFP curves superimposed on a subsequent display. Lastly, the Bluetooth headset’s microphone is tested with HFP and its frequency response is shown on the final display along with the previously collected data.

More

Lightning Headphone Test (Open Loop Test)

open_loop_headphone_screenshotThis sequence tests a stereo headphone connected to a portable audio device such as a mobile phone or MP3 player. It is particularly useful for testing headphones with proprietary connectors such as the Lightning connector which otherwise can’t be tested in a conventional “closed loop” test configuration.

The test stimulus is created in SoundCheck, saved as a WAV file and loaded on to the portable device for playback. Both left and right earphones are measured simultaneously using a continuous log sweep from 20 Hz to 20 kHz. The sequence uses a short 1 kHz tone, pre-pended to the normal test stimulus to automatically trigger the test when playback of the test signal begins; it also serves as reference tone for any frequency shift calculations. Post-processing precisely synchronizes the stimulus and response waveforms, and then calculation of the measurement parameters proceeds as with any conventional headphone. In this case, analysis is performed using the Time Selective Response (TSR) algorithm which performs THD and fundamental frequency response analysis simultaneously in addition to producing an impulse response. The fundamentals are then post processed to derive the sensitivity of the left and right channels at 1 kHz.

More

Headphone Testing with SoundCheck ONE

This SoundCheck ONE template sequence contains all the essential steps for basic headphone measurements using SoundCheck ONE and AudioConnectTM. The sequence can be easily customized and saved for specific products by turning individual measurements on and off, and by adjusting settings within each sequence step such as stimulus range and level, tolerance limits, graphical displays, and data saving.
Please note that sequences in SoundCheck ONE cannot have steps added/removed or the layout modified – the full version of SoundCheck is required for this capability.

More

Open Loop Microphone Testing – Updated

open_loop_mic_sc15v3_final_displayThis sequence demonstrates the two most common microphone measurements, frequency response and sensitivity, on a microphone embedded in a recording device. Typically when measuring a microphone the response of the device can be captured simultaneously with the stimulus. However, with devices such as voice recorders and wireless telephones forming a closed loop can be cumbersome or impossible. This sequence demonstrates how to measure such a device by recording the signal on the device under test, transferring that recording to the computer running SoundCheck and then using a Recall step to import the recorded waveform and analyze it.

Note that this specific sequence, v3, is an improvement on the prior versions. The v1 release required that the audio file containing the recorded response waveform be manually windowed outside of SoundCheck before being analyzed. The v2 release utilized a new feature in SoundCheck 14, using values from the memory list to semi-automatically trim the waveform before analysis. This v3 release completely automates waveform editing.

More

Comparison of Wired and Wireless (Bluetooth) Speaker Response

bluetooth_speaker_responseThis test sequence performs frequency response and distortion measurements of a Bluetooth speaker using both a wireless Bluetooth and wired stimuli, and compares the results. This sequence is configured for use with a Portland Tool & Die BTC-4148 or BQC-4148 Bluetooth interface.

Initially, the sequence prompts the operator to turn on the Bluetooth device under test and set it to pairing mode. BTC message steps will connect the Bluetooth device (operator selects the device from a list of detected Bluetooth devices) and connects Bluetooth audio. A 1 kHz test tone is transmitted, and if detected, the test sequence proceeds. A stepped sine sweep from 20 kHz to 100 Hz is played wirelessly to the Bluetooth speaker and measured via a calibrated reference mic.

Two post-processing steps convert the sampling rate and alignment of the response, then an analysis step calculates the frequency response and THD. The Bluetooth is disconnected, and the Bluetooth frequency response and THD curves are displayed on graphs. The operator is then prompted to connect the wired analog input into the Bluetooth speaker, and the same measurements are performed using the analog connection. Analog frequency response and THD curves are temporarily displayed on graphs, followed by graphs containing both Bluetooth and analog curves for comparison.

More

Linear Motor Test Sequence

linear_motor_test_seq_final_screenshotLinear motors (also known as linear vibrators or linear resonant actuators) have become increasingly popular in handheld devices such as phones and tablets for providing haptic feedback to the device’s user. The performance characteristics of these devices can now be tested using your SoundCheck system – the same software you are familiar with from your audio tests! The main difference between linear motor testing and audio testing is that an accelerometer (rather than a microphone) is used to measure the performance of the device under test.

A linear motor is designed to have a strong resonant frequency across a narrow frequency bandwidth; the motor is then operated at its resonant frequency to produce maximum output (vibration) while having minimal power demands on the portable device. The strength of the vibration is controlled by adjusting the magnitude of the AC signal input to the motor. In this sequence, first a sine sweep is applied to the device to calculate the resonant frequency, impedance and related values, and then a single tone at resonance is applied to measure characteristics such as rise and fall time.

More

IEC-60268-7 Headphone Sequences

seq_IEC-60268-7_distortion_impedance_no borderIEC-60268-7: Sound System Equipment – Part 7: Headphones and Earphones is an international standard intended to characterize the performance of headphones and earphones. The standard itself is a lengthy document, 9 Sections and 3 Annexes covering 46 printed pages. These SoundCheck sequences focus on the electro-acoustic tests which are detailed in Section 8 “Characteristics to be specified and their method of measurement”.

Five separate sequences are provided, each designed to measure specific characteristics. This approach provides the user with the flexibility to measure all or some of the characteristics of their headphone.

More

Triggered Record Using WAV File (Version 16.0 and earlier)

triggered_record_screenshotThis sequence allows you to test devices without an analog input such as tablets, cellphones and MP3 players. A stimulus WAV file is created in SoundCheck, and copied to the device under test, where it is played and the response recorded in SoundCheck as if the stimulus were played directly from SoundCheck. The stimulus WAV file to be used on the device under test (DUT) may be customized in the stimulus step.

Note that this sequence uses the level-based trigger available in SoundCheck 16.0 and earlier. If you are using version 16.1 or later, please see the frequency-trigger based sequence which takes advantage of new functionality to offer more robust triggering.

More

AGC Hearing Aid – Reference Gain & EIN Test Sequence

This sequence performs two of the measurements from the ANSI hearing aid test standard S3.22-1996.  The first part, in accordance with section 6.7 of the standard, helps the user set the reference test gain for the hearing aid, which is used for multiple measurements in the standard.  The second part, from section 6.12, tests the equivalent input noise (EIN) of the device.

More

Measuring Digital MEMS Microphones: Frequency, Sensitivity and Power Supply Rejection (PSR) Performance

seq_dig_mic_final_display_substitution_methodThis test suite contains 3 sequences to enable comprehensive testing of digital MEMS microphones.

The first measures the frequency and sensitivity and displays two graphs: absolute level in dBFS, and the same response curve but normalized to 0 dB at 1 kHz.

The second sequence uses the substitution method to test a digital MEMS microphone frequency response with a source speaker that is not or cannot be equalized. The MEMS microphone is simultaneously measuring with a reference microphone , and by subtracting the response of the reference microphone from the DUT microphone the response and sensitivity of the device under test is revealed.

Measuring Digital Microphone PSR (Power Supply Rejection)
The third sequence demonstrates a method for measuring a digital MEMS microphone’s power supply rejection performance (PSR). This sequence measures PSR at 217 Hz (the 217 Hz GSM TDM pulse often of concern) but is easy to modify to test at any frequency. A DC supply with a calibrated AC signal, simulating electrical interference is applied to the MEMS microphone. SoundCheck then records the audio from the DUT, analyzes it with a spectrum analyzer and extracts the RMS energy at the specific frequency of the simulated electrical interference and returns the PSR value. The setting of frequency, waveform type and amplitude of the simulated electrical interference is controlled entirely from within SoundCheck.

More