Posts

Practical Testing of Voice Controlled Devices

Author: Steve Temme.  Reprinted from the Jan 2020 issue of AudioXpress.

This article discusses tools and techniques that are available to accurately measure the audio performance of voice-controlled and connected devices under the many various real-world conditions they may be used. It covers basic acoustic measurements such as frequency and distortion response, which have always been carried out on conventional wired systems, and the more complex real-world tests that apply specifically to voice-activated devices, along withthe techniques and standards that may be used.
Full Article

 

 

 

 

 

The Challenges of Testing Voice-Controlled Audio Systems

Smart devices that are voice-controlled such as smart speakers, hearables, and vehicle infotainment systems are notoriously complex to test. They have numerous connections from wired to wireless and contain much signal processing, both on the record and the playback side. This means that their characteristics change according to ‘real world’ conditions of the environment that they are used in, such as background noise, playback levels, and room acoustics. Furthermore, their multifunctional nature means that there are many aspects of the device that may need to be tested, ranging from voice recognition to music playback, operation as a hands-free telephone, and in the case of hearables, hearing assistance. Due to their complex non-linear use cases, these devices often need to be tested at different levels and different environmental conditions. This paper focuses on tools and techniques to accurately measure the audio performance of such devices under the many various real-world conditions in which they are used.

 

语音控制的智能设备(例如智能扬声器、听觉设备和车辆信息娱乐系统)非常难以测试。它们具有从有线到无线的多样连接方式,并且在接收端和重放端使用了诸多信号处理技术。这意味着它们的特性会随着使用环境的“现实世界”条件(例如背景噪声、播放级别和室内声学条件)的不同而变化。 此外,它们的多功能特性意味着可能需要测试该设备的许多方面,包括语音识别、音乐播放、作为免提电话或听觉设备或助听器使用时的性能。由于其复杂的非线性使用情况,这些设备通常需要在不同级别和不同环境条件下进行测试。本文重点介绍在各种实际条件下准确测量此类设备的音频性能的工具和技术。

Author: Steve Temme, Listen, Inc.
Presented at ISEAT 2019, Shenzhen, China.

Full Paper – English Version
Full Paper – Chinese Version

Evaluation of Audio Test Methods and Measurements for End-of-Line Automotive Loudspeaker Quality Control

In order to minimize costly warranty repairs, automotive manufacturers impose tight specifications and a “total quality” requirement on their part suppliers. At the same time, they also require low prices. This makes it important for automotive manufacturers to work with automotive loudspeaker suppliers to define reasonable specifications and tolerances, and to understand both how the loudspeaker manufacturers are testing and also how to implement their own measurements for incoming QC purposes.

Specifying and testing automotive loudspeakers can be tricky since loudspeakers are inherently nonlinear, time variant and affected by their working conditions & environment which can be change dramatically and rapidly in a vehicle. This paper examines the loudspeaker characteristics that can be measured, and discusses common pitfalls and how to avoid them on a loudspeaker production line. Several different audio test methods and measurements for end-of-the-line automotive speaker quality control are evaluated, and the most relevant ones identified. Speed, statistics, and full traceability are also discussed.

Authors: Steve Temme, Listen, Inc. and Viktor Dobos, Harman/Becker Automotive Systems Kft.
Presented at the 142nd AES Convention, Berlin, Germany

Full Paper

In-Vehicle Audio System Distortion Audibility versus Level and Its Impact on Perceived Sound Quality

As in-vehicle audio system output level increases, so too does audio distortion. At what level is distortion audible and how is sound quality perceived as level increases? Binaural recordings of musical excerpts played through the in-vehicle audio system at various volume levels were made in the driver’s position. These were adjusted to equal loudness and played through a low distortion reference headphone. Listeners ranked both distortion audibility and perceived sound quality. The distortion at each volume level was also measured objectively using a commercial audio test system. The correlation between perceived sound quality and objective distortion measurements is discussed.

Authors: Steve Temme, Listen, Inc. and Patrick Dennis, Nissan Technical Center North America, Inc.,
Presented at the 141st AES Convention, Los Angeles, CA 2015

Full Paper