Tag Archive for: hearables

Smart Device Testing Seminar

Testing smart devices such as smart speakers, hearables, watches and more involves a combination of tests from many different application areas, ranging from simple transducer tests to open loop tests, Bluetooth measurements, voice activation tests, telecoms standards, hearing aid measurements and more. In this demo-focused seminar, we demonstrate how SoundCheck makes all the measurements you need throughout the entire smart device design process from component selection to pre-qualification testing.

Smart device testing demonstrations include:

  • Component tests: MEMS microphone measurement, directional microphone measurement, speaker evaluation
  • Prototype tests – open loop speaker test on a smart speaker, open loop microphone test on a smart speaker, Bluetooth hearables test, headphone Active Noise Cancellation (ANC) Measurement
  • Background Noise Tests: calibration, using pub noise to evaluate a microphone’s ability to reject background noise

Presenters: Steve Temme, Mark Latshaw, Steve Tatarunis
Duration: 48 Mins

Smart Device Measurement Resources

This seminar was originally broadcast on June 6th 2023. The recording below does not include the live Q&A at the end for attendee confidentiality reasons. However, several links to additional resources were provided during the Q&A session, and these are provided below.

  1. Internally routing audio: Open Loop microphone testing requires audio to be routed into SoundCheck. We recommend:
    1. Virtual Audio Cable for Windows: https://vac.muzychenko.net/en/index.htm
    2. Soundflower for Mac: https://github.com/mattingalls/Soundflower
  2. In response to a question about whether haptic feedback could be measured in a smartwatch, we shared a SoundCheck test sequence for measuring haptic feedback: https://www.listeninc.com/products/test-sequences/free/linear-motor-test-sequence/
  3. We touched briefly on communications audio tests when smart speakers are used as hands-free devices. To learn more about Communications Testing techniques and standards, please see our Communications Testing Seminar.
  4. Similarly, in answer to a question about testing automotive infotainment systems, we shared our Automotive audio testing seminar

More about how to Measure Smart Devices

Check out our main page on Smart Device Testing, which includes links to test sequences, relevant products and more.

 

Practical Testing of Voice Controlled Devices

Author: Steve Temme.  Reprinted from the Jan 2020 issue of AudioXpress.

This article discusses tools and techniques that are available to accurately measure the audio performance of voice-controlled and connected devices under the many various real-world conditions they may be used. It covers basic acoustic measurements such as frequency and distortion response, which have always been carried out on conventional wired systems, and the more complex real-world tests that apply specifically to voice-activated devices, along withthe techniques and standards that may be used.
Full Article

 

 

 

 

 

The Challenges of Testing Voice-Controlled Audio Systems

Testing voice-controlled audio systems such as smart speakers, hearables, and vehicle infotainment systems is notoriously complex. They have numerous connections from wired to wireless and contain much signal processing, both on the record and the playback side. This means that their characteristics change according to ‘real world’ conditions of the environment that they are used in, such as background noise, playback levels, and room acoustics. Furthermore, their multifunctional nature means that there are many aspects of the device that may need to be tested, ranging from voice recognition to music playback, operation as a hands-free telephone, and in the case of hearables, hearing assistance. Due to their complex non-linear use cases, these devices often need to be tested at different levels and different environmental conditions. This paper focuses on tools and techniques to accurately measure the audio performance of such devices under the many various real-world conditions in which they are used.

 

语音控制的智能设备(例如智能扬声器、听觉设备和车辆信息娱乐系统)非常难以测试。它们具有从有线到无线的多样连接方式,并且在接收端和重放端使用了诸多信号处理技术。这意味着它们的特性会随着使用环境的“现实世界”条件(例如背景噪声、播放级别和室内声学条件)的不同而变化。 此外,它们的多功能特性意味着可能需要测试该设备的许多方面,包括语音识别、音乐播放、作为免提电话或听觉设备或助听器使用时的性能。由于其复杂的非线性使用情况,这些设备通常需要在不同级别和不同环境条件下进行测试。本文重点介绍在各种实际条件下准确测量此类设备的音频性能的工具和技术。

Author: Steve Temme, Listen, Inc.
Presented at ISEAT 2019, Shenzhen, China.

Full Paper – English Version
Full Paper – Chinese Version

 

Paper Preview: The Challenges of Testing Voice-Controlled Audio Systems

Abstract
Smart devices that are voice-controlled such as smart speakers, hearables, and vehicle infotainment systems are notoriously complex to test. They have numerous connections from wired to wireless and contain much signal processing, both on the record and the playback side. This means that their characteristics change according to ‘real world’ conditions of the environment that they are used in, such as background noise, playback levels, and room acoustics. Furthermore, their multifunctional nature means that there are many aspects of the device that may need to be tested, ranging from voice recognition to music playback, operation as a hands-free telephone, and in the case of hearables, hearing assistance. Due to their complex non-linear use cases, these devices often need to be tested at different levels and different environmental conditions. This paper focuses on tools and techniques to accurately measure the audio performance of such devices under the many various real-world conditions in which they are used.

Keywords: hearables, automotive infotainment, smart speakers, smartphones, test

Introduction
Smart Devices such as smart speakers, hearables and automotive infotainment systems have become increasingly challenging to test. They have many possible interfaces ranging from hardwired to wireless (Bluetooth, cloud-based), smartphone, voice (“Hey Siri”, “OK Google”, “Alexa”), and in the case of automotive, even USB memory stick and CarPlay/Android Auto. There is usually much signal processing, both on the record side (e.g. beamforming, background noise filtering, voice activity detection, and on the playback side (e.g. loudness, compression, equalization, and active noise cancellation).
This means that their characteristics change according to ‘real world’ conditions such as the physical environment and background noise. Furthermore, their multifunctional nature means that there are many aspects of the device that may need to be tested, ranging from voice recognition to music playback or even operation as a hands-free telephone, telephone headset or hearing aid. These devices often need to be tested at different levels and in different environmental conditions, for example different physical setups and with/without background noise, different signals etc.

Although, there are currently no standards for testing most smart devices, principles and test configurations are borrowed from many other audio devices and use existing standards such as IEC and BS EN for loudspeakers and headphones , IEEE for headsets, IEEE/TIA/ITU for telephone test, ANSI and IEC for hearing aid standards , and ETSI for background noise. Flexibility of the test system and experience with testing a wide range of acoustic devices is therefore critical to enable a device to be completely characterized.

This paper explains how to implement both basic acoustic tests and more complex real-world tests along with the techniques and standards that may be used. Most of the tests discussed are relevant to all smart devices including smart speakers, hearables and automotive infotainment, but some hearable-specific additional tests are also detailed. Finally, we present a check list of the test-system functionality you should look for when choosing a system to fully characterize a smart speaker or other smart device.

 

Full Paper – English Version
Full Paper – Chinese Version

 

More about testing infotainment systems.

Testing Audio Performance of Hearables

Picture of AES paper on testing hearables

Testing Hearables AES Paper

Testing hearables, or smart headphones, is challenging. They have various interfaces ranging from hardwired to wireless and often contain signal processing on both the record and playback side. This means that their characteristics change according to ‘real world’ conditions such as their physical environment and background noises. Furthermore, their multifunctional nature means that there are many aspects of the device that may need to be tested, ranging from voice recognition to music playback or even operation as a telephone headset or hearing aid. In this AES paper, we discuss how to implement basic acoustic tests as well as the more complex real-world tests, techniques, standards, and equipment that are necessary.

Authors: Steve Temme, Listen, Inc.
Presented at AES Headphone Conference 2019, San Francisco, CA.

Full Paper
Poster Presentation

 

Abstract & introduction for “Testing Audio Performance of Hearables”

Abstract for “Testing Hearables”
Smart headphones or “hearables” are designed not only to playback music but to enhance communications in the presence of background noise and in some cases, even compensate for hearing loss. They may also provide voice recognition, medical monitoring, fitness tracking, real-time translation and even augmented reality (AR). They contain complex signal processing and their characteristics change according to their smartphone application and ‘real world’ conditions of their actual environment, including background noises and playback levels. This paper
focuses on how to measure their audio performance under the many various real-world conditions they are used in.

Introduction for “Testing Hearables”
Hearables are notoriously challenging to test. They have various interfaces ranging from hardwired to wireless (e.g. Bluetooth) and may contain much signal processing, both on the record side (e.g. beamforming, background noise filtering, voice activity detection, and on the playback side (e.g. loudness, compression, equalization, and active noise cancellation). This means that their characteristics change according to ‘real world’ conditions such as their physical environment and background noises. Some even have wake word detection, e.g. ‘Hey Siri’. Furthermore, their multifunctional nature means that there are many aspects of the device that may need to be tested, ranging from voice recognition to music playback or even operation as a telephone headset or hearing aid. Due to their complex non-linear use cases, these devices often need to be tested at different levels and in different environmental conditions, for example with background noise, different signals etc. Although, there are currently no standards for testing smart devices such as hearables, we can borrow principles and test configurations from many other audio devices and use existing standards such as; IEC for headphones [1], IEEE for headsets [2], ETSI for background noise [3], TIA/ITU for telephone test [4] and ANSI for hearing aids standards [5].

Flexibility of the test system and experience with testing a wide range of acoustic devices is critical to enable a device to be completely characterized. This paper discusses how to implement basic acoustic tests and some of the more complex real-world tests along with the techniques and standards that may be used. Test system requirements for measuring voice
enabled hearables will also be discussed.

Full Paper

More about Headphone & Hearables Testing

Triggered Record Using Chirp Trigger and WAV File (Version 17 and later)

This test sequence demonstrates SoundCheck’s Triggered Record – Chirp Trigger function for open loop testing of devices without analog inputs such as smart speakers, wearables, smart home devices, tablets and cellphones.  A stimulus WAV file is created in SoundCheck and transferred to the device under test, where it is played back and the response recorded in SoundCheck as if the stimulus were played directly from SoundCheck. The Acquisition step is triggered by the chirp in the stimulus file. Chirp triggers are more robust than level and frequency triggers which are susceptible to false triggering due to background noise.

More