Posts

Polar Plot (Linear X Turntable) Loudspeaker Sequence

This sequence measures the polar response of a loudspeaker in both the vertical and horizontal dimensions. It is designed to work with the Linear X turntable, and has all the necessary commands to automatically rotate it via RS-232. The sequence uses a log sweep stimulus with the Time Selective Response algorithm so that the measurements can be run in a non-anechoic environment. Note that the time window needs to be adapted to the user’s measurement space. The sequence plays the stimulus and measures at 10 degree increments from 0 to 180 degrees. This process is repeated with the speaker positioned horizontally. The two results are mirrored to display full 360 degree polar plots for each axis. A directivity index curve is also calculated for each axis and is displayed at the end of the test.

More

Polar Plot (Outline ET250-3D Turntable) Loudspeaker Sequence

This sequence measures the polar response of a loudspeaker in both the vertical and horizontal planes. It is designed to work with the Outline ET250-3D turntable and contains all the necessary commands to automatically rotate the turntable’s platter when the SoundCheck host PC is connected to the turntable via an Ethernet/LAN connection. The sequence uses a log sweep stimulus with the Time Selective Response algorithm so that the measurements can be made in a non-anechoic environment. Note that the analysis step’s time window needs to be adapted to the user’s measurement space. The ET250-3D custom control step will also need to be configured prior to running this sequence. The sequence plays the stimulus and measures at 10 degree increments from 0 to 180 degrees. This process is repeated with the speaker positioned horizontally. The two results are mirrored to display full 360 degree polar plots for each axis. A directivity index curve is also calculated for each axis and is displayed at the end of the test.

More

Microphone Polar Plot Substitution Method Using Outline ET250-3D

This sequence measures the directional response of a microphone and graphs the result as a polar plot. A log sweep stimulus is played from 100 Hz to 10 kHz at each angular increment, and the acquired waveform is analyzed using the Time Selective Response algorithm. This method allows the test to be performed in a non-anechoic environment by placing a window around the direct signal, eliminating the influence of reflections. Commands are sent automatically to the Outline ET250-3D turntable via an ethernet connection, instructing it to move in 10 degree increments after each measurement. The sequence measures the response every 10 degrees from 0 to 180 and mirrors the polar image, which simulates a full 360 degree polar and saves test time. The response at each angular increment is compared against the on-axis response to create a normalized curve. This removes the influence of the device’s frequency response and sensitivity, such that the polar plot only shows the directional response. The final display also contains a graph of the directivity index in decibels versus frequency.

More