Posts

IEC-60268-7 Headphone Sequences

IEC-60268-7: Sound System Equipment – Part 7: Headphones and Earphones is an international standard intended to characterize the performance of headphones and earphones. The standard itself is a lengthy document, 9 Sections and 3 Annexes covering 46 printed pages. These SoundCheck sequences focus on the electro-acoustic tests which are detailed in Section 8 “Characteristics to be specified and their method of measurement”.

Five separate sequences are provided, each designed to measure specific characteristics. This approach provides the user with the flexibility to measure all or some of the characteristics of their headphone.

More

EN 50332-1 – Max. SPL of Portable Audio Devices

EN-50332_1 screenshotThis sequence follows the test standard detailed in EN50332-1 (2013) for measuring the maximum sound pressure for portable music players and the earphones/headphones they are bundled with. The test involves loading a weighted pink noise stimulus file (as specified by IEC 268) onto the portable device and playing it through the earphones at the player’s maximum volume.

More

Active Noise-Cancelling Headphone Battery Life Test

ANC battery life sequence screenshotThis sequence is designed to measure performance characteristics of Active Noise Cancelling (ANC) headphones while monitoring the DC voltage and current provided to the headphone by its batteries.
The sequence first measures the passive attenuation of the headphone before moving into a loop. The loop plays a 2 minute pink noise stimulus at high output level to accelerate battery drain. During this stimulus period, a current measurement is made by Listen’s DC Connect. Immediately following the stimulus, battery voltage is measured followed by acquisition and analysis of audio parameters (response, THD and THD Normalized). The active attenuation of the headphone is then measured followed by a series of post processing and Autosave steps. The looping continues until no output is detected from the headphone, when the device shuts down due to insufficient battery capacity.

More

EN-50332-2: Measuring SPL of Portable Devices

EN50332_screenshotThese two sequences follow the test standard detailed in EN50332-2 for measuring the maximum levels of portable music players and earphones/headphones. This section of the standard covers the individual testing of the devices rather than the combined testing that is detailed in part 1. Note that the physical setup and connections will be different between the two sequences. Please read the hardware and calibration sections of this instruction carefully.

More

Noise Cancelling Headphones

When measuring noise cancelling headphones there are three important pieces of data to collect. Passive Attenuation is the amount of noise that is reduced at the ear simply by the headphones being worn. Active Attenuation is the amount of noise that is further reduced by turning on the device’s active cancellation circuits. Lastly, Total Attenuation is the combined reduction in noise from passive and active sources and is what the end user of the product will experience.

To calculate these metrics this sequence performs three separate measurements using a Head and Torso Simulator and a small speaker which serves as a noise source. The alternative to using the small speaker would be to use a diffuse background noise environment with multiple speakers playing uncorrelated noise. This is a far more complicated arrangement and would require additional steps in the sequence.

More

Headphone Test Sequence

headphone test screenshotThis sequence performs a comprehensive headphone test on a stereo headphone. Both left and right earphones are measured simultaneously using a standard 1/12th Octave stepped-sine sweep from 20 to 20 kHz.

The analysis is then performed using the HarmonicTrak™ algorithm that measures harmonic distortion and fundamental frequency response simultaneously, and the diffuse-field and free-field corrected curves are calculated. The diffuse-field correction curve compensates for the overall frequency response from the diffuse-field (sound in every direction) to the eardrum and includes the effects of the head, torso, pinna, ear-canal and ear simulator. The free-field correction curve compensates for the overall frequency response from the free-field (sound at 0 degree incidence to the nose of the Head and Torso Simulator – HATS) to the eardrum. Further post-processing of the signal compares left and right earphone responses to show the difference curve (magnitude and phase are available). The average sensitivity from 100 to 10 kHz for both left and right earphone is calculated and the total harmonic distortion displayed.

More